Banner Artigo

Prova FUVEST 2020 – Matemática – Resolução Comentada

Data 27/11/2019

Olá, pessoal… Tudo bem? Sou o prof. Marçal, do Estratégia Vestibulares, e escrevo este artigo para resolver as questões da prova da FUVEST 2020, da disciplina de Matemática. Nesta página, você vai conferir a resolução completa e ainda vai poder baixar gratuitamente os comentários em PDF. Vamos nessa??

Prova FUVEST 2020

Questão 13

Carros que saem da cidade A rumo a alguma das cidades turísticas E, F e G fazem caminhos diversos, passando por pelo menos uma das cidades B, C e D, apenas no sentido indicado pelas setas, como mostra a figura. Os números indicados nas setas são as probabilidades, dentre esses carros, de se ir de uma cidade a outra.

Nesse cenário, a probabilidade de um carro ir de A a F é

(A) 0,120.

(B) 0,216.

(C) 0,264.

(D) 0,336.

(E) 0,384.

Resolução Comentada

Para ir de A a F, há três caminhos possíveis: ACF, ABCF e ABDF.
Em cada caminho, as probabilidades são dadas pelos produtos:

\large ACF\rightarrow 0,2\cdot 0,6=0,12

\large ABCF\rightarrow 0,8\cdot 0,1\cdot 0,6=0,048

\large ABDF\rightarrow 0,8\cdot 0,9\cdot 0,3= 0,216

Como os caminhos são todos alternativos, a probabilidade total de o carro ir de A a F é dada pela soma

\large ACF+ABCF +ABDF

\large 0,12+0,048+0,216

\large 0,384

Gabarito: E

Questão 14

Se, em 15 anos, o salário mínimo teve um aumento nominal de 300% e a inflação foi de 100%, é correto afirmar que o aumento real do salário mínimo, nesse período, foi de

(A) 50%.

(B) 100%.

(C) 150%.

(D) 200%.

(E) 250%.

Resolução Comentada

Considerando o salário x com um crescimento de 300%, ou seja, de 3x, temos:

\large sal\'ario=x\rightarrow x+3x=4x

Já seu poder de compra, sofrendo uma alta de 100%, ou seja, de 1x, temos:

\large compra=x\rightarrow x+1x=2x

Desse modo, podemos perceber que o salário que tinha uma relação de 1 para 1 com a compra, agora é o dobro da compra. Se o poder de compra é o dobro, sofreu aumento de 100%, indicando o gabarito b).

Podemos, alternativamente, utilizar a fórmula para o ganho real:

\large 1+A=\left(1+i\right)\cdot\left(1+R\right)

\large 1+3=\left(1+1\right)\cdot\left(1+R\right)

\large 4=2\cdot\left(1+R\right)

\large 2=1+R

\large 1=R

\large 100\%=R

Gabarito: B

Questão 15

O cilindro de papelão central de uma fita crepe tem raio externo de 3 cm. A fita tem espessura de 0,01 cm e dá 100 voltas completas. Considerando que, a cada volta, o raio externo do rolo é aumentado no valor da espessura da fita, o comprimento total da fita é de, aproximadamente,

(A) 9,4 m.

(B) 11,0 m.

(C) 18,8 m.

(D) 22,0 m.

(E) 25,1 m.

Note e Adote:
π = 3,14

Resolução Comentada

Sabendo que o comprimento de uma circunferência é dado por \large C=2\cdot\pi\cdot R , temos a seguinte sequência de comprimentos ao enrolar a fita no cilintro:

\large C_1=2\cdot\pi\cdot R_1

\large C_2=2\cdot\pi\cdot R_2

\large C_3=2\cdot\pi\cdot R_3\\

\large \vdots

\large C_{100}=2\cdot\pi\cdot R_{100}

Dessa forma, o comprimento total da fita é dado por:

\large C_T=C_1+C_2+C_3+\ldots+C_{100}

\large C_T=2\cdot\pi\cdot R_1+2\cdot\pi\cdot R_2+2\cdot\pi\cdot R_3+\ldots+2\cdot\pi\cdot R_{100}

\large C_T=2\cdot\pi\cdot\left(R_1+R_2+R_3+\ldots+R_{100}\right)

\large C_T=2\cdot3,14\cdot\left(3,01+3,02+3,03+\ldots+4\right)

\large C_T=2\cdot3,14\cdot\frac{\left(3,01+4\right)\cdot100}{2}

\large C_T=3,14\cdot7,01\cdot100

\large C_T=22,0114\cdot100\ cm

\large C_T=22,0114\ \ m

Gabarito: D

Questão 16

Um objeto é formado por 4 hastes rígidas conectadas em seus extremos por articulações, cujos centros são os vértices de um paralelogramo. As hastes movimentam-se de tal forma que o paralelogramo permanece sempre no mesmo plano. A cada configuração desse objeto, associa-se d, a medida do menor ângulo interno do paralelogramo. A área da região delimitada pelo paralelogramo quando d = 90° é A.

Para que a área da região delimitada pelo paralelogramo seja \large \frac{A}{2} o valor de \large \theta é necessariamente, igual a:

(A) 15°

(B) 22,5°

(C) 30°

(D) 45°

(E) 60°

Resolução Comentada

Chamando os lados do retângulo de x e y, temos a seguinte relação entre suas áreas:

\large x\cdot y\cdot sen\left(\theta\right)=\frac{1}{2}\cdot x\cdot y

\large sen\left(\theta\right)=\frac{1}{2}

\large \theta=30\degree

Gabarito: C

Questão 17

A menor esfera na qual um paralelepípedo reto-retângulo de medidas 7 cm x 4 cm x 4 cm está inscrito tem diâmetro de

(A) 9 cm.

(B) 10 cm.

(C) 11 cm.

(D) 12 cm.

(E) 15 cm.

Resolução Comentada

Para que a esfera tangencie todos os vértices do paralelepípedo, seu diâmetro será igual à diagonal do paralelepípedo.

\large d_P^2=4^2+4^2+7^2

\large d_P^2=16+16+49

\large d_P^2=81

\large d_P=\sqrt{81}

\large d_P=9

Gabarito: A

Questão 18

A dona de uma lanchonete observou que, vendendo um combo a R$ 10,00, 200 deles são vendidos por dia, e que, para cada redução de R$ 1,00 nesse preço, ela vende 100 combos a mais. Nessas condições, qual é a máxima arrecadação diária que ela espera obter com a venda desse combo?

(A) R$ 2.000,00

(B) R$ 3.200,00

(C) R$ 3.600,00

(D) R$4.000,00

(E) R$ 4.800,00

Resolução Comentada

A arrecadação é dada pelo produto entre o preço de venda e o número de vendas.

Arrecadação = \large P\cdot V=10\cdot 200

Como, ao retirar 1 real, ganha-se 100 clientes, ao retirar x reais do preço, ganhar-se-á 100x clientes. Dessa forma, podemos reescrever nossa arrecadação como:

Arrecadação = \large \left(10-x\right)\cdot\left(200+100x\right)

Arrecadação = \large 2000+1000x-200x-100x²

Arrecadação = \large -100x^2+800+x+2000

Podemos perceber que a arrecadação depende da variável x de forma quadrática, cuja parábola apresenta concavidade negativa (a<0). Assim, ao tentar maximizar a arrecadação, estamos, na verdade, procurando o vértice da parábola.

\large \Delta =8002-4\cdot-100\cdot2000=

\large 640\ 000+800\ 000=1\ 440\ 000

Arrecadação = \large -\frac{\Delta }{4a}=-\frac{1\ 440\ 000}{4\cdot(-100)}=\frac{14\ 400}{4}= 3\ 600

Gabarito: C

Questão 19

A função E de Euler determina, para cada número natural n, a quantidade de números naturais menores do que n cujo máximo divisor comum com n é igual a 1. Por exemplo, E (6) = 2 pois os números menores do que 6 com tal propriedade são 1 e 5. Qual o valor máximo de E (n), para n de 20 a 25?

(A) 19

(B) 20

(C) 22

(D) 24

(E) 25

Resolução Comentada

A descrição da função de Euler indica que devemos selecionar, a cada número n, todos os números menores que n, que sejam primos com n.

Para n=20, temos:

\large 20\rightarrow1,3,7,9,11,13,17,19\rightarrow E\left(20\right)=8

Para n=21, temos:

\large 21\rightarrow1,2,4,5,8,10,11,13,16,17,19,20\rightarrow E\left(21\right)=12

Perceba que, por serem números compostos, acabamos por retirar todos os números menores que n que tenham algum primo em comum com n.

Dessa forma, não há necessidade de fazermos o processo para todos os números do exercício (entre 20 e 25), pois, nesse intervalo, só há um primo, o 23.

Assim, para o 23, não precisaremos retirar número algum da sequência dos números menores que ele, pois é primo, resultando no maior resultado possível, nesse intervalo, para E(n).

Portanto, n=23

\large 23\rightarrow1,2,3,4,5,6,7,8,9,10,11,12,

\large 13,14,15,16,17,18,19,20,21,22\rightarrow22

Gabarito: C

Questão 20

Se \large 3x^2-9x+7=\left(x-a\right)^3-\left(x-b\right)^3 para todo número real x, o valor de a+b é:

(A) 3.

(B) 5.

(C) 6.

(D) 9.

(E) 12.

Resolução Comentada

Desenvolvendo os cubos, temos:

\large 3x^2-9x+7=\left(x-a\right)^3-\left(x-b\right)^3

\large 3x^2-9x+7=x^3-3x^2a+3xa^2-a^3-\left(x^3-3x^2b+3xb^2-b^3\right)

\large 3x^2-9x+7=x^3-3x^2a+3xa^2-a^3-x^3+3x^2b-3xb^2+b^3

\large 3x^2-9x+7=\left(3b-3a\right)x^2+\left(3a^2-3b^2\right)x-a^3+b^3

O que nos leva ao seguinte sistema de equações

\large 3b-3a=3

\large 3a^2-3b^2=-9

\large -a^3+b^3=7

\large 3\left(b-a\right)=3

\large 3\left(a^2-b^2\right)=-9

\large -a^3+b^3=7

\large b-a=1

\large a^2-b^2=-3

\large b^3-a^3=7

\large b-a=1

\large \left(a+b\right)\cdot\left(a-b\right)=-3

\large b^3-a^3=7

\large b-a=1

\large \left(a+b\right)\cdot\left(-1\right)=-3

\large b^3-a^3=7

\large b-a=1

\large a+b=3

\large b^3-a^3=7

Como a questão solicitou o valor de a+b, não é preciso ir adiante, já temos nossa resposta: a+b=3.

Gabarito: A

Questão 21

Uma agência de turismo vendeu um total de 78 passagens para os destinos: Lisboa, Paris e Roma. Sabe-se que o número de passagens vendidas para Paris foi o dobro do número de passagens vendidas para os outros dois destinos conjuntamente. Sabe-se também que, para Roma, foram vendidas duas passagens a mais que a metade das vendidas para Lisboa. Qual foi o total de passagens vendidas, conjuntamente, para Paris e Roma?

(A) 26

(B) 38

(C) 42

(D) 62

(E) 68

Resolução Comentada

Da leitura do enunciado, tiramos o seguinte sistema de equações:

\large L+P+R=78

\large P=2\cdot\left(L+R\right)

\large R=2+\frac{L}{2}

Dando andamento à resolução do sistema, temos:

\large L+P+R=78

\large 2L-P+2R=0

\large -L\ \ \ \ \ \ \ \ +2R=4

\large L+P+R=78

\large -3P\ \ \ +2=-78\cdot2

\large P+3R=82

\large L+P+R=78

\large P+2=52

\large P+3R=82

\large L+P+R=78

\large P\ \ \ \ =52

\large R=10

Novamente, a questão nos solicitou o valor da soma P+R, portanto, não há necessidade de seguirmos com a resolução do sistema, uma vez que

\large P+R=52+10=62

Gabarito: D

Questão 22

Um ponto (x, y) do plano cartesiano pertence ao conjunto F se é equidistante dos eixos OX e OY e pertence ao círculo de equação \large x^2+y^2-2x-6y+2=0

É correto afirmar que F

(A) é um conjunto vazio.

(B) tem exatamente 2 pontos, um no primeiro quadrante e outro no segundo quadrante.

(C) tem exatamente 2 pontos, ambos no primeiro quadrante.

(D) tem exatamente 3 pontos, sendo dois no primeiro quadrante e outro no segundo quadrante.

(E) tem exatamente 4 pontos, sendo dois no primeiro quadrante e dois no segundo quadrante.

Resolução Comentada

O conjunto de pontos que é equidistante dos eixos coordenados é dado pelas retas

y = x

y = -x

Como, para pertencerem ao conjunto F, os pontos também precisam satisfazer a equação \large x^2+y^2-2x-6y+2=0, podemos utilizar a substituição para encontrar as coordenadas dos pontos.

Para o caso y = x

\large x^2+x^2-2x-6x+2=0

\large 2x^2-8x+2=0

\large \Delta =b^{2}-4\cdot a\cdot c=-82-4\cdot 2\cdot 2=64-16=48

\large x=\frac{-b\pm \sqrt{\Delta }}{2a}=\frac{-(-8)\pm \sqrt{48}}{2\cdot 2}=

\large \left\{\begin{matrix} x'=\frac{8+4\sqrt{3}}{4}=2+\sqrt{3} & \\ &\\ x''=\frac{8-4\sqrt{3}}{4}=2-\sqrt{3}\end{matrix}\right.

\large y=x\rightarrow\left(2+\sqrt3;2+\sqrt3\right)

e

\large \left(2-\sqrt3;2-\sqrt3\right)

Portanto, dois pontos do primeiro quadrante. Vejamos o próximo caso.

\large y=-x

\large x^2+\left(-x\right)^2-2x-6\left(-x\right)+2=0

\large 2x^2+4x+2=0

\large \Delta =b2-4\cdot a\cdot c=42-4\cdot 2\cdot 2=0

\large x=\frac{-b\pm \sqrt{\Delta }}{2a}=\frac{-4\pm 0}{2\cdot 2}=-1

\large y=-x\rightarrow (-1; 1)

Ou seja, um ponto no segundo quadrante.

Até aqui, tudo bem, temos 3 pontos, dois no primeiro quadrante e um no segundo quadrante, o que poderia indicar a alternativa d) como nosso gabarito.

No entanto, a palavra “círculo”, no enunciado, remete à área cercada pela circunferência. Como uma das retas (y=x) é secante à circunferência, teríamos infinitos pontos pertencentes ao conjunto F, não só os 3 que achamos.

Além disso, a equação fornecida, não representa um círculo e sim uma circunferência. Equações de círculo envolvem desigualdades, não igualdades.

Dessa forma, apesar de haver uma indicação de resposta na alternativa d), indico a questão para anulação.

Gabarito: PARA ANULAÇÃO

Questão 23

Uma cidade é dividida em dois Setores: o Setor Sul, com área de 10 km2, e o Setor Norte, com área de 30 km2. Após um final de semana, foram divulgados os seguintes totais pluviométricos:

É correto afirmar que o total pluviométrico desse final de semana na cidade inteira foi de

(A) 15 mm.

(B) 17 mm.

(C) 22 mm.

(D) 25 mm.

(E) 28 mm.

Resolução Comentada

O total pluviométrico P é, na verdade, uma razão entre o volume de chuva que cai em uma determinada área, ou seja, uma razão entre um volume e uma área.

Seguindo essa definição, temos:

\large P=\frac{10\ Km^2\cdot\left(7+9\right)\ mm+30\ Km^2\cdot\left(11+17\right)\ mm}{10\ Km^2+30\ Km^2}

\large P=\frac{\left(10\cdot 16+30\cdot 28\right)\ \cancel{Km^2}\cdot mm}{40\ \cancel{Km^2}}

\large P=\frac{160+840}{40}mm

\large P=\frac{1000}{40}mm

\large P=25\ mm

Gabarito: D

Questão 24

As possíveis soluções, em polegadas (inches, em inglês), para o problema matemático proposto no quadrinho, no caso em que os pontos A, B e C estão em uma mesma reta, são

(A) \large \frac{10}{3} e 10

(B) \large \frac{10}{3}, 5 e 10

(C) \large \frac{5}{3},\ \ \frac{10}{3} e 10

(D) \large \frac{5}{3} e 10

(E) \large \frac{10}{3} e 5

Resolução Comentada

O texto deixa claro que a distância entre \large A e \large C(d_{AC}) é o dobro da distância entre \large A e \large B(d_{AC}) ou seja

\large d_{AC}=2\cdot d_{AB}

Utilizando um sistema ordenado e respeitando a ordem de que A, B e C são colineares, podemos representar os pontos em uma reta orientada.

Dessa forma, seguindo as orientações do enunciado, temos:

\large d_{AC}=2\cdot d_{AB}

\large x-0=2\cdot\left(5-x\right)

\large x=10-2x

\large 3x=10

\large x=\frac{10}{3}

\large d_{AC}=\frac{10}{3}

Até aqui, tudo bem. No entanto, há uma segunda possibilidade para posicionarmos o ponto A, fora do intervalo BC, veja:

Com essa nova representação, mas ainda com a premissa do exercício de que \large d_{AC}=2\cdot d_{AB}, temos:

\large d_{AC}=2\cdot d_{AB}

\large x-0=2\cdot\left(x-5\right)

\large x=2x-10

\large 10=x

\large d_{AC}=10

Assim, temos duas possibilidades para a posição do ponto A, nas condições dadas.

Gabarito: A

É isso, pessoal! Espero que tenham curtido a resolução da prova de Matemática da prova do Vestibular FUVEST 2020. Sigam-me nas redes sociais. Têm muitas dicas lá. Mande uma mensagem, caso tenha tido alguma dúvida. Abraços!

Instagram: @professor.marcal

Leia mais…

CURSOS PARA FUVEST

Prof. Marçal Ferreira

Prof. Marçal Ferreira

Graduado em Matemática pela UFSJ, Universidade Federal de São João del Rei, professor de Matemática do Estratégia Vestibulares.

Deixe seu comentário!

Deixe uma resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Você também pode gostar:
Olá, vestibulando(a)! Tudo bem com você? Espero que sim. Estou passando aqui para comentar a
Olá, pessoal… Tudo bem? Sou o prof. Marco Túlio, do Estratégia Vestibulares, e escrevo este
Olá, vestibulando(a)! Tudo bem com você? Espero que sim. Estou passando aqui para comentar a
Olá, pessoal. Tudo bem? Sou a prof. Carol Negrin e escrevo este artigo para resolver
Olá, pessoal! Sou a Prof. Carol Negrin e, neste artigo, nós vamos tratar sobre um

Deixe uma resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *